

Crash-Only Software

George Candea and Armando Fox
Stanford University

{candea,fox}@cs.stanford.edu

mailto:fox%7D@cs.stanford.edu

Crash-only programs crash safely and recover quickly.
There is only one way to stop such software—by crashing
it—and only one way to bring it up—by initiating recov-
ery. Crash-only systems are built from crash-only compo-
nents, and the use of transparent component-level retries
hides intra-system component crashes from end users.

What?

● Instead of:
● Start-up
● Orderly shutdown
● Recovery (a special kind of startup)

● Just have:
● Recovery

● Shutdown is either:
● cut power
● simple, external code (kill -9)

Why?

● Simpler, more robust
● Often faster

Within Components

1. All persistent(*) state in specialist
state managers

*: Typically: "between requests/operations"

App Perimeter
● TLS
● Compression
● Load Balancing
● Access Control
● IDS/IPS/Firewall
● ...

StorageApp Code

2. State managers are crash-only /
crash-safe

● Oracle vs. PostgreSQL

3. Use appropriate storage interface
abstractions

● Minimise complexity (ACID / objects / session
state / read-only / caches)

● Tie cost to requirements

● Don't use a filesystem for storing customers,
opportunities, and orders

● Don't use an ACID database for caching

Between Components

4. Component boundaries contain
failures

● VMs, Java processes/tasks, ...

5. All requests have timeouts

● Timeout triggers reporting to a recovery agent
which crash-restarts the failed component

● Optionally: Client waits a while and retries a
limited number of times

● Optionally: Failing component returns 503 and
set "Retry-After: 1.3" header ; times spread out
to soften restart

● Contains failures

6. All resources are leased

● Forces/allows reasoning about what happens
when things go away

7. Requests are self-describing
continuations

● (a data structure which describes execution
state in a way that is programmatically
accessible, rather than hidden in the runtime
environment)

● Specified TTL
● Idempotent where possible (and labeled)
● Rollbacks only required where non-idempotent

Examples

● Chat daemon at UTS
● RealMail
● LPC
● Puppet vs. Debian
● Transactional database stores
● UNIXWare filesystem

Related Ideas

● Coerce failures to component failures ->

all recovery is "restart failed component"
● Nightly reboot
● Beware Arianne 5 situation: recovery code is not

optional!
● Simplifies rejuvenation (rotating VMs to deal with

migration ; apply upgrades ; test for failures)
● Crash-Only “levels” ala RAID

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

